The PSCD dataset is an image database for semantic scene chagne detection. It comprises 770 panoramic image pairs. Each pair consists of images I0, I1 taken at two different time points t0, and t1. These panoramic images are taken in urban areas. The PSCD dataset contains the change binary masks C0, C1, the semantic labels S0, S1, the instance labels D0, D1, the attributes A0, A1 (3D object, 2D texture).
The projection type of the panoramic image is equirectangular. The resolution of the original image is 4,000 × 2,000. The dataset images are croped the top and bottom part as follows.
For original annotation data
We define 11 classes for the original annotation data as follows.
For semantic change detection task
Furthermore, we define 8 classes for semantic scene change detection task as follows.
PSCD
| --README.txt
| --t0 // 00000000.png - 00000769.png
| --t1 // 00000000.png - 00000769.png
| --mask_t0 // 00000000.png - 00000769.png
| --mask_t1 // 00000000.png - 00000769.png
| --mask // 00000000.png - 00000769.png
| --label_t0 // 00000000.png - 00000769.png
| --label_t1 // 00000000.png - 00000769.png
| --privacy_mask_t0 // 00000000.png - 00000769.png
| --privacy_mask_t1 // 00000000.png - 00000769.png
| --label_instance_t0 // 00000000.png - 00000769.png
| --label_instance_t1 // 00000000.png - 00000769.png
| --attribute_t0 // 00000000.png - 00000769.png
| --attribute_t1 // 00000000.png - 00000769.png
| --sensor_mask.png
RGB image I0 |
|
RGB image I1 |
|
Semantic change label S0 |
|
Semantic change label S1 |
|
Change mask C0 |
|
Change mask C1 |
|
Change mask C0 & C1 (Not aligned) |
Privacy mask P0 |
Privacy mask P1 |
|
Instance change label D0 |
|
Instance change label D1 |
|
Attributes (2D, 3D) A0 |
|
Attributes (2D, 3D) A1 |
|
Sensor mask Msensor |
F1 Score | mIoU | |
Siamese-CDResNet (Ours) | 0.697 | 0.719 |
CSCDNet (Ours) | 0.698 | 0.719 |
CSCDNet + SSCDNet | GT mask + SSCDNet | CSSCDNet | ||||||
Training data (CD / SCD) | PCD / Vistas | PSCD (mask) / Vistas | - / Vistas | PSCD (full) | ||||
DA for training | - | ✓ | - | ✓ | - | ✓ | n/a | |
mIoU | 0.192 | 0.196 | 0.215 | 0.223 | 0.303 | 0.283 | 0.322 |
You may only use this dataset for academic research purposes and shall not redistribute it without our permission. When using this dataset in an academic paper, please cite the following paper as a reference:
@inproceedings{sakurada2020weakly,
title={{Weakly Supervised Silhouette-based Semantic Scene Change Detection}},
author={Sakurada, Ken and Shibuya, Mikiya and Wang, Weimin},
booktitle={ICRA},
pages={6861--6867},
year={2020},
organization={IEEE}
}
Terms of use are displayed after you click the following button. When you agree to the term of use, you can download PSCD dataset.
Please contact us at the following email address if you find any concerns.
M-pscd-ml@aist.go.jp
Personal information provided via email will be used for the purpose of processing inquiries and responding to inquiries, and will be handled appropriately set forth in the following Privacy Policy.
https://www.aist.go.jp/aist_e/privacy_policy/index_en.html
This work is partially supported by KAKENHI 18K18071 and the New Energy and Industrial Technology Development Organization (NEDO).
Our class definition file format follows the Mapillary Vistas Dataset [1]. We would like to acknowledge G. Neuhold et al. We use the face [2] and the number plate [3] detection algorithms for mosaicing images. We would also like to acknowledge Deepak Babu Sam and Sérgio Montazzolli Silva et al.
[1] G. Neuhold, T. Ollmann, S. Rota Bulò, and P. Kontschieder,
"The Mapillary Vistas Dataset for Semantic Understanding of Street Scenes",
International Conference on Computer Vision (ICCV), 2017.
[2] Deepak Babu Sam, Skand Vishwanath Peri, Mukuntha Narayanan Sundararaman,
Amogh Kamath, R. Venkatesh Babu,
"Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection",
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020.
[3] Sérgio Montazzolli Silva, Cláudio Rosito Jung,
"License Plate Detection and Recognition in Unconstrained Scenarios",
European Conference on Computer Vision (ECCV), 2018.