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Abstract— The ability to associate the current location with
previously visited places is an essential aspect of autonomous
ground robots. Unstructured environments such as planetary
surfaces pose a significant challenge for robots because their
terrain is less distinctive. Meanwhile, traversability must be
analyzed simultaneously for safe navigation. In the past, place
recognition research has rarely considered traversability analy-
sis despite its significance. This is because the structural infor-
mation of terrains becomes quickly implicit during the encoding
process. This paper provides a method that explicitly addresses
both problems: place recognition and traversability analysis.
It proposes a discrete Fourier transform (DFT) to represent
the frequency components embedded in ground curvature,
which underlies both concepts. Our place recognition function
demonstrates excellent performance in extensive experiments
using challenging planetary & urban datasets while estimating
traversability that other approaches find difficult to handle.

I. INTRODUCTION

Autonomous robots in unknown environments require si-
multaneous localization and mapping (SLAM). The key fea-
ture of these systems is their ability to recognize previously
visited places, enabling them to correct the map distorted
by estimation errors. However, unstructured environments
such as planetary surfaces pose a significant challenge for
visual-based approaches [1]–[3] owing to their visual am-
biguity. Meanwhile, traversability analysis is essential for
safe navigation in uneven terrains. Despite the importance
of traversability analysis, our literature survey revealed no
suitable methods capable of addressing both issues.

For visually ambiguous scenes, point clouds’ structures
have been exploited for place recognition [4]–[6]; these
methods offer high accuracy in localization. However, they
are sensitive to noises and less informative in unstructured
environments. In addition, their implicit nature does not
allow robots to interpret incoming hazards.

We propose Structural Discrete Fourier Transform
(SDFT), which realizes stable place recognition and
traversability analysis by leveraging frequency information
embedded in the local point cloud as illustrated in Fig. 1.
The aggregation of frequencies can represent gentle ground
curvature and urban scenes in a more informative way than
approaches describing salient structures [7], [8]. Moreover,
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Fig. 1: Our approach is designed to simultaneously solve
place recognition and traversability analysis in challenging
unstructured terrains for mobile robots based on a frequency
analysis of the environment.

Fourier analysis of a point cloud seamlessly addresses both
tasks simultaneously, as the understanding of frequency
components is a common principle in these tasks. The
contributions of this study are featured as follows:

• Provision of a novel structure-based descriptor that
exploits underlying frequency components from a 3D
point cloud for high-entropy representation.

• Proposal of traversability analysis, which is concur-
rently accomplished during descriptor creation.

• Experimental validations of our approach with real
datasets. Compared to existing methods, the proposed
method shows excellent performance w. r. t. accuracy
and robustness against noises. Meanwhile, it pinpoints
traversable locations with degrees of danger risks that
were entirely overlooked by other approaches.

II. RELATED WORK

The approaches that have been used in place recognition
studies can be categorized into visual and structural methods.
Visual approaches focus on visual similarities between the
query and target image. Visual similarities are represented
as a cooccurrence of local descriptors, such as ORB [9] and
SIFT [10], which use feature aggregation schemes such as
bag-of-visual words. However, their performance is sensi-
tive to extreme lighting conditions and viewpoint changes.
Moreover, as visually ambiguous scenes, such as planetary
sites, degrade their performance, other approaches should be
explored for stable detection.



Structure-aware approaches present strong robustness to
the aforementioned perceptual challenges. They can be sep-
arated into local, global, and learning-based descriptors.

Local descriptors, such as SHOT [11], spin image [12],
and shape context [13], begin with key point detection, sep-
arate points into several bins, and encode their bin patterns
into a histogram. Most of these methods, however, usually
suffer from noises included in the point clouds. This is
because these approaches compute normal vectors per point
to summarize the place. Le Gentil et al. [14] addressed noisy
point clouds using Gaussian process regression [15], which
gives dense and precise 3D representation. However, as the
process requires considerable computation for online pro-
cessing, it is unsuitable for extreme environment exploration
where vehicles have scarce computing resources.

Global descriptors, which exploit the point cloud’s appear-
ance, can cope better with noisy point clouds. Using LiDAR,
Scan Context [16], and their variations [17], [18] encodes the
surrounding structure with high-entropy descriptors by sepa-
rating clouds into circular bins along the distance. Konrad et
al. proposed DELIGHT [19], which encodes spatial informa-
tion with intensity information originating from LiDAR. A
robot can use rich intensity information to localize the map
without prior information. Fresco [20], whose key idea was
closest to ours, aimed to aggregate frequency components to
represent the place. However, these approaches rely on the
nature of LiDAR and assume that robots can recognize their
omnidirectional environments. Because of their high energy
consumption, 3D LiDAR sensors have not been deployed
in autonomous robot missions in planetary environments.
Therefore, this study considers stereo cameras as a primary
sensor and leverages them to represent structural information.

Approaches based on deep learning have received con-
siderable attention in the field of place recognition. Sev-
eral deep-learned approaches [21]–[23] have been exten-
sively investigated in localization problems. Although deep-
learning techniques may significantly improve performance,
they present high computational complexity in cases where
GPUs are unavailable.

He et al. proposed M2DP [24], which projects the entire
point cloud onto multiple 2D planes and generates low-
dimensional descriptors. M2DP achieved higher accuracy
and strong robustness against decreases in resolution and
noises. Recent approaches, such as those in [25] and [26], use
distinctive diagrams from key points or landmarks. The cur-
rent state-of-the-art approach, STD [8], which summarizes
places as a group of triangles, connecting local key points
from the point cloud, follows this trend.

However, none of the above approaches address
traversability analysis because the structure information used
for the analysis becomes implicit during encoding. Recent
traversability representations rely on deep learning with nav-
igation experiences [27], [28]. Instead, this study proposes
a novel 3D descriptor for informative place description and
traversability analysis based on frequency properties.

III. METHODOLOGY

Assuming the robot uses a stereo camera to reconstruct
point clouds, we propose DFT-based structural encoding
(SDFT). We will briefly explain some basic concepts in DFT.
Then, we shall provide the details of SDFT.

A. 2D Discrete Fourier Transform

A discrete Fourier transform converts a discrete signal
from its original domain to frequency components. There-
fore, we can represent any signal defined in 2D space as a
weighted summation of frequencies.

Assume that there is a 2D function f(x, y) where x and y
are spatial information. f(x, y), whose dimension is N ×N ,
can be converted to a frequency representation F (u, v),
where u and v are the frequencies in the horizontal and
vertical directions.

F (u, v) =

N−1∑
x=0

N−1∑
y=0

f(x, y) exp

(
−2πj(ux+ vy)

N

)
(1)

The dimension of F (u, v) becomes the same as f(x, y).
Equation 1 is utilized for place recognition. As planetary

terrain does not show salient structures, approaches that
exploit saliency detections fail to generate informational
representations. Conversely, gentle ground curvatures can be
regarded as an aggregation of physical waves. Based on this
insight, SDFT is constructed using Fourier analysis.

An inverse discrete Fourier transform can be described as
follows for any function defined in 2D space:

f(x, y) =
1

N2

N−1∑
u=0

N−1∑
v=0

F (u, v) exp

(
2πj(ux+ vy)

N

)
(2)

Equation 2 is exploited for traversability analysis. Applying
this to a limited range of F (u, v), specific frequency com-
ponents can be isolated and extracted.

As described above, decomposing the ground structure
into frequency components provides seamless solutions for
place recognition and traversability analysis.

B. Algorithm Overview

Given a point cloud, we first project it onto a single
plane to represent it as a digital elevation map (DEM). Next,
DFT is applied to the DEM to extract underlying frequency
information. This DFT output is utilized in place recognition
and traversability analysis, as shown in Fig. 2 (a).

We must form sufficiently robust descriptors against sig-
nificant viewpoint changes for place recognition. Therefore,
we sample values from the DFT output through our max-
pooling sampling to gain robustness. By sampling a signa-
ture, we can represent the point cloud by a data matrix A.
We then match two point clouds by comparing their data
matrices. For compact representation, we employ SVD for
dimensionality reduction.

Traversability is influenced by various factors, including
the kinematic model of the unmanned ground vehicle (UGV)
and the physical properties of the environment [29]. This
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Fig. 2: (a): Overview of the proposed pipeline consisting of place recognition and traversability analysis. (b): Overview of
DEM creation. PCA defines the local reference frame. The plane passes through the centroid of the point cloud.

study, however, focuses on analyzing the frequency charac-
teristics of the terrain. Specifically, it posits that terrains with
finer undulations pose a greater risk to traversal. Hazardous
regions associated with their degree of travel risk must be
located for safe robot navigation. We adopt iterative low-pass
filters with different cut-off frequencies to extract portions of
the point cloud associated with each frequency.

Details regarding place recognition are described in the
next two subsections, while traversability analysis is de-
scribed in the last section.

C. Preprocessing of a Point Cloud

To enhance the robustness of the descriptor against
changes in the camera’s pose, the reference frame should be
defined based on the structural properties of the local point
cloud. To realize this, we first place the reference frame’s
origin onto the centroid of the point cloud. We then perform
PCA on the points to find the two underlying dominant
directions in the point cloud and its normal vector. The first
and second PCs define the reference frame’s x and y-axis. As
the normal vector is settled, the descriptor becomes invariant
w. r. t. the elevation of the sub-map’s origin.

However, as PCA is inherently affected by narrow-angle
point cloud shapes, achieving correct associations under
significant yaw angle changes is difficult. As an additional
process, our max-pooling sampling strategy is proposed as
explained in Section III-D.

D. SDFT Creation for Place Recognition

Next, we generate a DEM by projecting local point cloud
P to a plane as illustrated in Fig. 2 (b). We first define the
plane X passing through the origin with the normal vector
m derived in Section III-C. For each point p in P and its
corresponding point’s location u on X , u = p − (pTm)m.
Each pixel value is the distance from the point to the plane.

The pixel map is now integrated with DFT to obtain
F (u, v). We denote the size of the pixel map as M × N
and let X(a, b) be the value at the (a, b)-th pixel of X .

F (u, v) =

M−1∑
a=0

N−1∑
b=0

X(a, b) exp
(
−2πj

( u

M
a+

v

N
b
))

(3)

For place recognition, we take the logarithm of all absolute
values in F (u, v).

Let a polar coordinate system define F (u, v). We define r
as its polar radius and θ as its angle. Suppose two DEMs, IA
and IB , differ by a rotation δθ, i.e., IA(r, θ) = IB(r, θ+δθ).
We have

IFA (r, θ) = IFB (r, θ + δθ) (4)

where IF is a DFT output. This means rotation in the spatial
domain causes the same rotation in the frequency domain.
Considering Equation 4, our descriptor is sensitive to rotation
along the normal vector.

To mitigate this rotation effect, we divide DFT output
into polar bins and index them according to their radius
and angle. Next, we take the maximum values in each bin
to gain max-pooling effects, alleviating the rotation shifts.
To deal with opposite revisitation, bins for max-pooling are
organized as illustrated in Fig. 3 (a). This is because their
frequency responses are inverted at that moment.

The DFT output is unrolled in the log-polar coordinate
system to arrange kernel windows for pooling. Fig. 3 (b)
illustrates the bin and kernel window organization. Let the
unrolled DFT output be Z, and the result from max-pooling
be A. We define Z(a, b) as the value of the (a, b)-th element
in Z (0 ≦ a < M, 0 ≦ b < N). We denote R(i,j) as a kernel
window whose output results in the (i, j)-th element of A.
Given Z, each element of A can be formulated:

B(k,j) :=

{
Z(r, j)

∣∣∣∣Mθ

2π
k ≦ r <

Mθ

2π
(k + 1)

}
R(i,j) :=

{{
B(k,j)

∣∣k =
{
0, π

θ ,
π
θ − 1, 2π

θ − 1
}}

if i = 0{
B(k,j)

∣∣k =
{
i, i+ π

θ

}}
if i ̸= 0

A(i,j) = max
(a,b)∈R(i,j)

Z(a, b) (5)

Finally, to reduce the dimension, SVD is applied to A. The
first left and right singular vectors are concatenated as the
final form of SDFT. Given SDFT, we coarsely search for
loop closure candidates based on the L2 proximity metric.

E. Traversability Analysis

The traversability analysis process aims to extract the
regions of the point cloud forming each frequency that is
regarded as a degree of traversability in this study.

To realize this, we iteratively adopt low-pass filters, de-
creasing their cut-off frequency. As the filtering makes the
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Fig. 3: Partitions where max-pooling is applied. Bins of the
same color are combined to form a kernel window that is
applied to max-pooling.

point cloud smoother, points constituting the target fre-
quency are highlighted by selecting points distant from the
smoothened cloud. The flow of the algorithm is summarized
in Algorithm 1. We employ the following different elements:

• GetSmoothenedCloud: Applying a low-pass filter to
the DFT output, point sets that belong to frequencies
lower than Fi are obtained.

• GetHigherFreq: Comparing with the original point
cloud, a set of points Pi is extracted, which consists
of higher frequencies than Fi.

• GetComponent: The lower cut-off frequency Cw is
applied with the filter, the more points are obtained from
GetHigherFreq. This function highlights points that
become Pi for the first time when Cw decreases to Fi.

Applying a hard threshold in the frequency domain results
in a ringing effect in the spatial structure. Employing a filter
with a smooth cut-off effectively prevents the occurrence of
this distortion phenomenon. Hence, in this study, we utilized
a Butterworth filter [30], which is a signal-processing filter.
The equation can be expressed as follows:

Algorithm 1 Traversability analysis algorithm

Input: Point cloud P , DFT output of the DEM Fdem,
frequencies F to be associated with P . F is organized
in descending order

Output: Point cloud clusters X constituting each frequency
components

1: i← 0
2: X ← {}
3: for all element← F do
4: s← GetSmoothenedCloud(element, Fdem)
5: p← GetHigherFreq(P, s)
6: if i > 0 then
7: f ← GetComponent(pprev, p)
8: else
9: f ← p

10: end if
11: X.insert(f)
12: pprev ← p
13: i← i+ 1
14: end for
15: return X

Fig. 4: (a) LRNT sequence. An unstructured and visually am-
biguous terrain. (b) S3LI sequence. Dome ground curvature
can be seen. (c) MADMAX sequence. More rocky terrain.
(d) Livox sequence. A park area filled with trees can be seen
in the point cloud.

|T (d)| = 1√
1−

(
d
dc

)2n
(6)

T is the magnitude response, d is the distance from the DC
component in the frequency domain, and dc is the cut-off
frequency. n is the order of the Butterworth filter, which
determines how quickly the function decreases. n = 4 was
used in our implementation.

IV. EXPERIMENTAL EVALUATION

This section evaluates our method against existing
structure-based descriptors on public datasets. We compared
SDFT with three descriptors: SHOT, M2DP, and the state-
of-the-art STD descriptor. SDFT was implemented in Python
while SHOT was coded in C++, M2DP was written in Matlab
and C, and STD was coded in C++. Only the official open-
sourced codes were employed. Our platform for experiments
was a laptop equipped with an Intel Core i7 5GHz.

The proposed method was evaluated using camera se-
quences in MADMAX [31], LRNT [32], and S3LI [33].
We used the MADMAX-1, 21, LRNT-1, 22, and S3LI-1, 23

sequences. Sequences have few distinctive features as they
were recorded to simulate exploration on planetary surfaces.
Moreover, an urban dataset, Livox sequence4 [8], was used
to evaluate STD in Section IV-A. The datasets are detailed
in Table I. Examples of each scene are listed in Fig. 4.

In the next subsection, STD is separately evaluated from
other approaches because different experimental setups were

1MADMAX Path E & G sequence
2LRNT Path 1 & 2 sequence
3S3LI Crater inout & Loops sequence
4Livox Avia park 2 sequence



TABLE I: Properties of the sequences used in the evaluations.

MADMAX S3LI LRNT Livox
Sequence name E G Crater inout Loops 1 2 Avia park 2
Total length (m) 906 394 1338 587 834 1097 802
Number of keyframes 2202 1169 1122 484 2298 2673 538
Number of revisited frames 1787 1096 501 260 1887 1277 538
Route dir. on revisit Both Both Same Same Both Reversed Both

TABLE II: Results for place recognition with the state-of-
the-art key point-based STD descriptor.

STD SDFT
Dataset Top 10 accuracy(Stability) Top 10 accuracy
Livox 0.586 (100) 0.877
MADMAX-1 0.247 (75.5) 0.870
MADMAX-2 – (15.5) 0.979

required for fair comparison. A comparison with SHOT and
M2DP is conducted in the following subsections.

A. Comparison with State-of-the-art Approach

Recent approaches focus on diagram constellations con-
sisting of key points and demonstrate excellent performances
in structured environments [8], [34]. However, unstructured
environments lack structures that help form stable patterns.

Dataset: To demonstrate this, STD was evaluated using
MADMAX and Livox datasets. For every dataset, the de-
tection was regarded as a true positive if the ground truth
pose distance between the queries and matched frames was
less than 15m. To avoid neighbor detections, 30 frames be-
fore/after the current frame were ignored from the evaluation.

Experimental Settings: For fair comparisons, we used
STD without geometry checks. STD required processing a
sub-map comprising ten frames for Livox and 20 frames
for MADMAX dataset. Considering this, the same sub-maps
were used for SDFT.

As STD relies on unique triangles consisting of key points,
it fails to generate descriptors for some frames if a reasonable
number of key points are not detected from the scene. In
the remainder of this section, the word “stability” will be
referred to as the ratio of frames in which STD succeeded
in generating descriptors.

STD’s official parameters were used for Livox dataset.
Meanwhile, we carefully tuned its parameters to maximize
their stability and accuracy for planetary scenes. Testing
SDFT, we settled the dimension of the DEM and the angular
value to define max-pooling: the width and height of the
DEM were 60 m, and the angular value was set to 30◦.

Evaluation Metric: Top 10 accuracy was adopted. In
contrast to SDFT, which refers to L2 norms between the
query description and all in the database, STD selects fewer
candidates because of screening. Considering this, accuracy
for STD was computed from the top candidates, up to a
maximum of ten outputs. As the final output is chosen from
these via the following geometry checks in STD, this process
is applicable for estimating STD’s performance.

Results: The results are listed in Table II. Our approach
showed better accuracy with Livox dataset. In their imple-
mentation, STD picks the top 50 candidates and determines
the best one after geometry checks, which results in higher

performance. We concluded that geometry checks play an
important role in gaining STD’s performance.

It shows that STD’s performance significantly declined in
unstructured environments. In MADMAX-2, stability was
even lower compared to that in MADMAX-1. The reason
was that the smaller size of point clouds in MADMAX-2
prevented sufficient key point detections. As STD descriptors
were too unstable in MADMAX-2, we were unable to
obtain any possible candidates. Meanwhile, SDFT generated
more informative descriptions without detections of salient
structures, as indicated in favorable accuracies.

B. Comparison with Existing Global Descriptors

Dataset: We employed MADMAX, LRNT, and S3LI
datasets. A total of 30 frames before/after the current frame
was ignored from the evaluation to avoid neighbor detections.

MADMAX sequences have 6 degrees of freedom ground
truth, while others only have position data. For MADMAX
dataset, two locations were considered to be true positive if
their distance was less than 5m and the orientation change
θdiff was in a reasonable bound (0 ≦ |θdiff | ≦ 30 or 150 ≦
|θdiff | ≦ 180). Meanwhile, true positive detections were
decided based on positions in LRNT and S3LI sequences.

Experimental Settings: As SHOT is a surface normal-
based approach, it requires a setting for the normal cal-
culations. Our experiments estimated the normal based on
their nearest ten points. SHOT also needs a radius parameter
that defines the area taken into account. To regard SHOT
as a global descriptor, this parameter was configured to
encompass the same spatial range as SDFT, i.e., 15m×15m.
For M2DP, the default parameters were used. As SDFT
parameters, the width and height of the DEM were 15m,
and the angular value was set to 30◦ for max-pooling.

Evaluation Metric: Three different experiments were
used to evaluate the performance of the approaches. Except
for the third experiment, the resolution of the point clouds
was set to 0.2m.

In the first experiment, SDFT was compared against ex-
isting methods, SHOT and M2DP, regarding Top K accuracy
(1 ≦ K ≦ 10), using all datasets. Fig. 5 illustrates the results.

The second experiment focused on robustness against
random noise on point clouds. In this experiment, we
added uniform noise ranging from 0 to xnoise(m) to each
point location in MADMAX sequences, where xnoise =
[0, 0.01, 0.02, 0.05, 0.1, 0.15, 0.2, 0.3]. We iterated this eval-
uation ten times to increase repeatability and computed
the average/std of each Top 10 accuracy. The results are
summarized in Fig. 6.

The third experiment investigated the robustness w. r.
t. different down sample sizes. The grid size was set as



(a) MADMAX-1 (b) MADMAX-2 (c) S3LI-1
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Fig. 5: Top K accuracies on MADMAX, S3LI, and LRNT datasets.

[0.05, 0.075, 0.1, 0.2, 0.3, 0.5, 0.7] in meters. All approaches
were applied on the down-sampled clouds. A comparison of
the Top 10 accuracies is presented in Fig. 7.

Results: From Figs. 5, 6, 7, we can observe following:
• As shown in Fig. 5, SDFT generally showed better

performance than other methods. SHOT and M2DP
sometimes presented competing results, as seen in Figs.
5 (b) and (f). However, their performance decreased
overall, while SDFT’s performance was superior and
stable. This means the performance of SHOT and M2DP
was highly dependent on point cloud properties and may
resulted in fewer unique descriptors.

• From Fig. 6, SDFT showed no noticeable accuracy
degradation with xnoise < 0.15 while other approaches
presented some decrease at that stage. As SHOT relies
on normal vectors on the surface, the noises caused the
most significant decline. M2DP showed a higher dura-
bility with xnoise > 0.15 than SDFT. Although SDFT
presented some degradation with significant errors, its
performance was still better than M2DP.

• According to Fig. 7, our approach was sensitive to point
cloud density, while other methods showed more gentle
degradation. Conversely, our approach showed signifi-
cant improvement if the point cloud was dense. This
result was natural, considering the sampling theorem.
Therefore, it is crucial to select an appropriate grid size
depending on the property of the environment.

C. Computational Complexity

The average computation time was evaluated in
MADMAX-1 while changing point cloud density. The
timing for matching was measured in Python. The results
are presented in Table III.

Fig. 6: Top 10 accuracies with different noise amounts. Top:
MADMAX-1. Bottom: MADMAX-2.

Fig. 7: Top 10 accuracies with different down-sampling sizes
in MADMAX-2.

In these experiments, SDFT took longer than M2DP
for descriptor creation because Matlab and C, which are
generally faster than Python we use in SDFT, are employed
in M2DP. When a common code was employed for point



TABLE III: Time costs of calculating descriptors and search-
ing candidates in MADMAX-1 sequence in milliseconds.

Descriptor calculation Candidate searching
Grid size(m) 0.05 0.1 0.2 0.05 0.1 0.2
SDFT 198 68.4 12.5 86.3 82.7 12.8
SHOT 477 452 276 82.6 83.9 21.4
M2DP 29.5 11.8 6.63 79.1 77.6 14.3

Fig. 8: SDFT’s contribution ratio along frequency from
MADMAX-2 sequence while changing point cloud density.

cloud matching, the search time depended on the number
of dimensions. SDFT took longer than M2DP as the point
cloud density grows but in a reasonable bound.

D. Result Interpretation

Before SDFT is formed via SVD, the descriptor’s dimen-
sions along columns can be associated with the frequency
degree as shown in Fig. 3 (b). As SVD operates as a
linear mapping operation, analysis of the final SDFT can
be conducted before SVD is employed.

To interpret SDFT’s performance, we computed each fre-
quency’s contribution to accuracy, while changing the point
cloud density. The grid size was set as [0.05, 0.075, 0.1,
0.2] in meters. Contributions were estimated by computing
normalized variances along each dimension after gathering
all descriptors in MADMAX-2 as shown in Fig. 8.

The result indicates that higher frequencies were no longer
interpreted as input point clouds became sparse. As the result
in Fig. 7 suggests that denser point clouds improved SDFT’s
accuracy, we concluded that the range of interpretable fre-
quencies was vital for its performance.

E. Combination with Visual-based Approach

We evaluated DBoW35 as a visual-based approach using
MADMAX and LRNT sequences. Furthermore, a coarse-to-
fine approach was adopted to determine the candidates from
SDFT and DBoW3. We first selected the top 50 candidates
with SDFT, and the final top 10 candidates were determined
based on their appearance. The result is shown in Fig. 9.

Fig. 9 presents that the superiority of an approach de-
pended on the properties of the scene. DBoW3 was more
suitable if visual features were sufficiently rich or the point
cloud was too small to provide enriched structures, as shown
in MADMAX-2 or LRNT-2.

Fusing different domains may help to mitigate their in-
completeness. We found that the coarse-to-fine approach
mentioned above provided an excellent balance w.r.t. their

5https://github.com/rmsalinas/DBow3

accuracies. Therefore, the combination of SDFT and DBoW3
provides more stable place recognition regardless of the
scene’s property.

F. Qualitative Evaluation of Traversability Analysis

We tested our method’s traversability analysis in
MADMAX-1, which includes hazardous regions. As shown
in Fig. 10 (b), the robot recognized hazardous areas with
continuous degrees of danger. We built a cost map from these
masks that safely navigated the robots to the desired place.
As a demonstration, we applied the A* algorithm [35] on
the cost map, as shown in Fig. 10 (c).

V. CONCLUSION

This paper presents a discrete Fourier transform-based
structural representation method, SDFT, for conducting
place recognition and traversability analysis seamlessly. We
demonstrate the high performance of the proposed method
in unstructured and urban environments, where it exhibits
superiority over baseline methods w. r. t. accuracy and
robustness against noises. These results indicate that wave
decomposition more informatively represents ground struc-
tures. Furthermore, unlike existing descriptors, the proposed
method simultaneously analyzes traversability based on the
frequency components embedded in the ground.

In the future, we will investigate the applicability of sparse
point clouds generated from monocular SLAM or insufficient
SGM matching in featureless areas.
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